Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Epidemics ; 19: 33-42, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28089780

RESUMO

Coexistence of multiple tick-borne pathogens or strains is common in natural hosts and can be facilitated by resource partitioning of the host species, within-host localization, or by different transmission pathways. Most vector-borne pathogens are transmitted horizontally via systemic host infection, but transmission may occur in the absence of systemic infection between two vectors feeding in close proximity, enabling pathogens to minimize competition and escape the host immune response. In a laboratory study, we demonstrated that co-feeding transmission can occur for a rapidly-cleared strain of Borrelia burgdorferi, the Lyme disease agent, between two stages of the tick vector Ixodes scapularis while feeding on their dominant host, Peromyscus leucopus. In contrast, infections rapidly became systemic for the persistently infecting strain. In a field study, we assessed opportunities for co-feeding transmission by measuring co-occurrence of two tick stages on ears of small mammals over two years at multiple sites. Finally, in a modeling study, we assessed the importance of co-feeding on R0, the basic reproductive number. The model indicated that co-feeding increases the fitness of rapidly-cleared strains in regions with synchronous immature tick feeding. Our results are consistent with increased diversity of B. burgdorferi in areas of higher synchrony in immature feeding - such as the midwestern United States. A higher relative proportion of rapidly-cleared strains, which are less human pathogenic, would also explain lower Lyme disease incidence in this region. Finally, if co-feeding transmission also occurs on refractory hosts, it may facilitate the emergence and persistence of new pathogens with a more limited host range.


Assuntos
Borrelia burgdorferi , Interações Hospedeiro-Parasita , Doença de Lyme/transmissão , Animais , Camundongos , Meio-Oeste dos Estados Unidos
2.
Infect Genet Evol ; 27: 566-75, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24787999

RESUMO

The effect of biodiversity declines on human health is currently debated, but empirical assessments are lacking. Lyme disease provides a model system to assess relationships between biodiversity and human disease because the etiologic agent, Borrelia burgdorferi, is transmitted in the United States by the generalist black-legged tick (Ixodes scapularis) among a wide range of mammalian and avian hosts. The 'dilution effect' hypothesis predicts that species-poor host communities dominated by white-footed mice (Peromyscus leucopus) will pose the greatest human risk because P. leucopus infects the largest numbers of ticks, resulting in higher human exposure to infected I. scapularis ticks. P. leucopus-dominated communities are also expected to maintain a higher frequency of those B. burgdorferi outer surface protein C (ospC) genotypes that this host species more efficiently transmits ('multiple niche polymorphism' hypothesis). Because some of these genotypes are human invasive, an additive increase in human disease risk is expected in species-poor settings. We assessed these theoretical predictions by comparing I. scapularis nymphal infection prevalence, density of infected nymphs and B. burgdorferi genotype diversity at sites on Block Island, RI, where P. leucopus dominates the mammalian host community, to species-diverse sites in northeastern Connecticut. We found no support for the dilution effect hypothesis; B. burgdorferi nymphal infection prevalence was similar between island and mainland and the density of B. burgdorferi infected nymphs was higher on the mainland, contrary to what is predicted by the dilution effect hypothesis. Evidence for the multiple niche polymorphism hypothesis was mixed: there was lower ospC genotype diversity at island than mainland sites, but no overrepresentation of genotypes with higher fitness in P. leucopus or that are more invasive in humans. We conclude that other mechanisms explain similar nymphal infection prevalence in both communities and that high ospC genotype diversity can be maintained in both species-poor and species-rich communities.


Assuntos
Biodiversidade , Doença de Lyme/epidemiologia , Risco , Vertebrados , Animais , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Borrelia burgdorferi/genética , Frequência do Gene , Genótipo , Humanos , Larva , Doença de Lyme/transmissão , Ninfa , Prevalência , Carrapatos/microbiologia
3.
Vet Pathol ; 48(5): 985-92, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21311069

RESUMO

Systemic isosporosis, also known as atoxoplasmosis, is a common parasitic disease of passerines. Infection is thought to be endemic in wild birds with fulminant, fatal disease occurring under the influence of stress, concurrent infections, or immunosuppression. Here, we describe the histologic and immunohistochemical characteristics of the cellular infiltrate occurring in captive colonies of American goldfinches and house sparrows. Necropsies were performed on 9 birds, and histologic examination was performed on the intestines of 7 additional birds. Lesions were most severe in the proximal small intestines. Histologically, the changes ranged from variably intense infiltrates of lymphocytes that filled the lamina propria to sheets of large, atypical cells that expanded and obliterated normal mucosal epithelium and invaded through the wall of the intestine and into the ceolomic cavity. Both the smaller lymphocytes and large atypical cells were immunoreactive for CD3. Intracellular parasites consistent with Isospora were detected in the large atypical cells, but they were more easily detectable in the more differentiated lymphocytes. Polymerase chain reaction and virus isolation performed on tissues from 7 birds were negative for retroviruses and herpesvirus. The immunohistochemical results of this study and the destructive nature of the cellular infiltrate suggest that the lesion represents T-cell lymphoma. In birds, lymphomas are most often associated with herpes and retroviruses; the absence of these viruses suggests that the parasite initiated neoplastic transformation. Though much work needs to be done to prove the transformative nature of the lesions, these preliminary results suggest that passerine birds may be susceptible to parasite-associated lymphomas.


Assuntos
Doenças das Aves/parasitologia , Surtos de Doenças/veterinária , Enteropatias Parasitárias/veterinária , Isospora/isolamento & purificação , Isosporíase/veterinária , Linfoma de Células T/veterinária , Aves Canoras , Animais , Doenças das Aves/patologia , Imuno-Histoquímica/veterinária , Enteropatias Parasitárias/parasitologia , Enteropatias Parasitárias/patologia , Isospora/genética , Isosporíase/parasitologia , Isosporíase/patologia , Linfoma de Células T/parasitologia , Linfoma de Células T/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA